⑤Elliptic curve .

Definition . 1) Smooth projective curve over k of genus one with distinguished rational point 0 ^G ECK) when $char$ $k \neq 2, 3$. It is defined by a Werestrass equation y^2 $z = a^3 + a a^2 z + B z^3$ with discriminat $\triangle^2 4A^3 + 2B^2 7C$ We can define group law on $E(k)$ to make it become abelian group. a

mooth projective curve over k of

inguished rational point $0 \in E(k)$

chark $\pm 2, 3$. It is defined by a
 $y^2z = a^3 + aa^2z + Bz^2$ with dis

an define grap buo on $E(k)$ to ma

an define grap buo on $E(k)$ to ma

an define R

C2). Elliptic curve is an adellan variety of dimension I

Weiestrass equation is not intrinsic . We can change it i) We embeded the elliptic curve into P^2 by different ways. $2^8.3^3A^3$ Momever, $\hat{J}(E) = \frac{2^8 \cdot 3^3 A^3}{4A^3 + 27B^2}$ is independent of choice of Weiestrass equation. We call it j-invariant.

 (JI) If E and E' are f -elliptic curves, then $E \cong E'$ $\iff j(E) = j(E')$ $(J2)$ For every $\hat{j} \in \mathcal{L}$, there exists an \mathcal{E} with $\hat{j}(\mathcal{E}) \in \hat{j}'$

 $``$ j-line is the moduli space of elliptic curves" "j-line parametrizes elliptic curves" Our goal is to define Shimura curves.

 $^\gamma$ shimuma curves parametrize abelian surfaces with potential quaternimic multiplication $CPQM$)

S lattices

·

Over k , $\text{\rm EC}(k)$ \cong $\frac{p}{\Lambda}$, Over k , $E(k) \cong \frac{k}{n}$, where $\Lambda \cong \mathbb{Z}^2$ is a lattice
Clattice in k is a two-dinensional k – vector space)
Hence topologically $E(k)$ is a torus. C lattice in C is a two-dimensional $R-$ vector space).

View $\zeta = R^2$, we can determine a lattice A by giving its basis V_1 , $V_2 \in \mathbb{R}^2$. The matrix $\mathbb{E} V_1 | V_2 \mathbb{J} \in \mathcal{G}l_2(V_1)$,

 $\left\{\n\begin{array}{ccc}\n\text{lattice} & \text{in} & \text{L} \\
\text{in} & \text{in} & \text{in} & \text{L} & \text{L} \\
\text{in} & \text{in} & \text{in} & \text{L} & \text{L} \\
\text{in} & \text{in} & \text{L} & \text{L} & \text{L}\n\end{array}\n\right.$ not I to ¹ . need reduce it by equivalent relation Fact:
Two elliptic curve $\mathcal{L}_\Lambda \cong \mathcal{L}_{\Lambda'} \iff \exists \text{def}^*$ $st.$ α Λ = α Λ' Hence we need consider the quotient $G L_2(R)/_{C}$ In other words, whenever we have a basis $[z]$ $[z]$

We can change it into the form EI , zJ by multiplying a
complex number $\frac{1}{z}$
Hence. $Gb5(P)_{C}x \leq Jt^{-1} = \frac{2}{3}a+yi$ $y \neq 0$ complex number $\frac{1}{\epsilon}$ Hence $(h5(P))_{pX} \cong {H^{\pm}} = 2h + y + y + 9$ Now we require τ EJt⁺. This can be viewed as requirency our basis vector $[z_1|z_1]$ to be positively oriented. $A_{\nu} = 2 + 2\tau$ Fact : $A_{\tilde{l}} \cong A_{\tilde{l}}$ $\iff \exists [\begin{array}{cc} a & b \\ c & d \end{array}] \in S\{ \underline{l}_1(\mathbb{Z}) \text{ } \subseteq t \text{ } \bigcup_{c \in d}^{a} \begin{array}{cc} b \\ c & d \end{array} \big| \text{ } i = \mathbb{Z}^d$ |
|
| S t $\frac{1}{1}$
a T tb
c T td \int elliptic curves \int \langle $\frac{1}{\sqrt{2}}$ \int \int \langle $\frac{1}{\sqrt{2}}$ \rangle \langle $\frac{1}{\sqrt{2}}$ \langle $\frac{1}{\sqrt{2}}\rangle$ \int V \mathbb{A}^1 Modular Curve. We get moduli space of elliptic curves over k by looking at the quotient space $\mathcal{L}_2(\mathbb{Z})$ acting on \mathcal{H} . We can generalize the idea by using subgroup PCS LLE) ve un yeneranze
acting on JV.

Define : $P(W) = \left[\begin{array}{c} \alpha & b \\ c & d \end{array} \right] \in SL(2) \left[\begin{array}{c} \alpha & b \\ c & d \end{array} \right] \equiv \left[\begin{array}{c} \alpha & 0 \\ o & 1 \end{array} \right]$ mod N $P(N) = \int [a_0^b] \in SL(2)$ $[0, b] = \int_0^{\pi} {a_1^b \over 2} m \nu l N$ $\left\{\begin{array}{c} \left[\begin{array}{c} a & b \\ c & d \end{array}\right] \in SL(2) \right\} & \left[\begin{array}{c} a & b \\ c & d \end{array}\right] = L \\ \left\{\begin{array}{c} \left[\begin{array}{c} a & b \\ c & d \end{array}\right] \in SL(2) \right\} & \left[\begin{array}{c} a & b \\ c & d \end{array}\right] = L \end{array}\right.$ \int_{I}^{2} (M) = $\left\{\left[\begin{array}{c} a & b \\ c & d \end{array}\right] \in SL_2(\mathbb{Z}) \middle| \left[\begin{array}{c} a & b \\ c & d \end{array}\right] \equiv \left[\begin{array}{c} 1 & * \\ 0 & 1 \end{array}\right] \text{ mod } N \right\}$ We have $P(W)$ $C \stackrel{\infty}{P(W)} C P_0(W)$ $C \stackrel{\infty}{S(W)} C SL(Z) = PCI$ Def . ^A group P such that $P(N)$ \subset P \subset $SL(2)$ is called congruence group of $sl_2(2)$ Def . γ $(P) = P \backslash H$. we have ^a natural map $Y(\text{RM}) \rightarrow Y(\text{RM}) \rightarrow Y(\text{RM}) \rightarrow (0)$ P_{ν} $\begin{array}{lll} \{ \gamma \in \mathbb{R}^n \colon & \text{if} \; \gamma \in \mathbb{R} \ \mathbb{O} & \text{if} \; \; \gamma \in \mathbb{R} \ \mathbb{O} & \text{if} \; \; \mathbb{R} \ \mathbb{O} & \text{if} \; \; \mathbb{R} \ \mathbb{O} & \text{if} \; \; \mathbb{R} \ \mathbb{P} & \text{if}$ $[U] \longrightarrow [E_{\nu}, \langle W + \nu \rangle]$ ^② Y(P(N)) < [pairCE , c) , where & is ^a point in where Q is a
EENJ \searrow $(L^{[r]}(F, w)) \xrightarrow{L^{[r]}(F, w)} L^{[r]}$ $+\, \Lambda_{\bar{\nu}}) \, \Big]$ \Rightarrow $Y(\Gamma(W))\xrightarrow{f}$ to Y and $(E, (P, a))$ where P, a are two points that generate EEN] With ^a fixed weil pairing value y'

$$
\begin{array}{ccc}\n \begin{array}{ccc}\n \begin{array}{ccc}\n \begin{array}{ccc}\n \begin{array}{ccc}\n \begin{array}{ccc}\n \begin{array}{ccc}\n \end{array} & & \frac{1}{\sqrt{1}} & \\
 \end{array}\n \end{array}\n \end{array}
$$

In previous section, $\gamma_{(V)}$ are curves defined ever ϕ . In fact, they can be defined over number field.

Prop. There are curves Y(PIN) · Y(PIN)) defined over a Such that

 $Y(F_0(w)) \otimes_\mathbb{Q} F = F_0(w) \setminus H$ $Y(P_i(w))$ \mathcal{B}_{α} \mathcal{L} = P_i (N) \backslash \mathcal{H} .

In general, if $P> P(W)$ there are curves $Y(P(W))$ defined over $Q(S_N)$ where S_N is a primitive Nth root of unity such that $Y(1'00)$ (disn) $E = P(w)$